Answer:
Option C
Explanation:
Case I
Reflection from mirror
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}\Rightarrow\frac{1}{-10}=\frac{1}{v}+\frac{1}{-15}$
$\Rightarrow$ v=-30
For lens $\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\frac{1}{10}=\frac{1}{v}-\frac{1}{-20}$
v=20
$|M_{1}|=|\frac{v_{1}}{u_{1}}||\frac{v_{2}}{u_{2}}|$
$=\left(\frac{30}{15}\right)\left(\frac{20}{20}\right)$
= 2 X 1=2 (in air)
Case II For mirror , there is no change
v=-30
For lens
$\frac{1}{f_{air}}=\left(\frac{3/2}{1}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{1}{f_{medium}}=\left(\frac{3/2}{7/6}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
with fair =10cm
We get $\frac{1}{f_{medium}}=\frac{4}{70}cm^{-1}$
$\frac{1}{v}-\frac{1}{-20}=\frac{4}{70}$
$\frac{1}{v}+\frac{1}{20}=\left(\frac{2}{7}\right)\left(\frac{2}{10}\right)=\frac{4}{70}$
$\frac{1}{v}=\frac{4}{70}-\frac{1}{20}$
v=140,
$|M_{2}|=|\frac{v_{1}}{u_{1}}||\frac{v_{2}}{u_{2}}|$
$=\left(\frac{30}{15}\right)\left(\frac{140}{20}\right)$
$=2\left(\frac{140}{20}\right)=14$
$\Rightarrow$ $|\frac{M_{2}}{M_{1}}|=\frac{14}{2}=7$